MEZE PŘESNOSTI METODY KVANTOVÉ MONTE CARLO V LIMITĚ SLABÉ INTERAKCE

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Ing. Matúš Dubecký, Ph.D.

Instituce: Ostravská univerzita
Oblast: Materiálové vědy

Více než 4 miliony jádrohodin získal Matúš Dubecký na výzkum zaměřený na stanovení mezí přesnosti metody Fixed-node diffusion Monte Carlo (FNDMC) pro nekovalentní interakce. Nekovalentní interakce hrají klíčovou roli v mnoha oblastech výzkumu, např. v materiálové vědě nebo vývoji léčiv. Tým Matúše Dubeckého se zaměří na provedení srovnávací studie, navazující na předešlý výzkum a použití metody FNDMC u 2D materiálů, jejichž vlastnosti jsou ovlivněné nekovalentními interakcemi molekul, nebo 1D vodičů na jejich površích. Cílem tohoto projektu je za pomoci superpočítače zjistit míru spolehlivosti metody FNDMC, která je v současné době hojně využívána jako kvantová referenční metoda pro velké nekovalentní systémy. Kromě hlubšího fyzikálního náhledu do metodologie FNDMC a návrhu možných vylepšení, povedou výsledky k lepší kontrole přesnosti a racionálnějšímu použití této metody nejen pro velké systémy.



PRECIZNOST A PŘESNOST VAZEBNÝCH ENERGIÍ ROZLEHLÝCH SYSTÉMŮ IV

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Mgr. Jiří Klimeš, Ph.D.

Instituce: Univerzita Karlova
Oblast: Materiálové vědy

 

 

Více než 2,8 milionů jádrohodin výpočetního času IT4Innovations získal tým Jiřího Klimeše na projekt, ve kterém se zaměří na preciznost a přesnost výpočtu vazebných energií krystalů, obzvláště těch, které jsou vázané nekovalentními vazbami. Takovéto materiály jsou důležité jak v přírodě, tak v průmyslu, příkladem jsou metanové klatráty na dně moří, krystaly léčiv, nebo vrstevnaté systémy jako je grafit. Mezi jejich zajímavé vlastnosti patří polymorfismus – schopnost mít i za stejných podmínek různou krystalickou strukturu. Jedním z cílů tohoto projektu je využití superpočítače k vývoji metody, která by umožnila spolehlivý popis stability různých polymorfů nebo různých krystalických fází materiálů. Jedná se o projekt základního výzkumu, jehož cílem je pochopení limitů přesnosti metod používaných v současnosti a vývoj metod s vyšší přesností, které se uplatní pro simulace materiálů v budoucnu. Výzkumný tým Jiřího Klimeše chce také integrovat vyvinuté skripty pro přípravu a analýzu výpočtů do „balíčků“ používaných pro automatizované pracovní postupy. Toto by mělo zajistit, aby metody určené pro přesné výpočty vazebných energií byly jednoduše použitelné jinými výzkumnými skupinami, a také zvýšit reprodukovatelnost takovýchto výsledků.



OD ANTIFÁZOVÝCH HRANIC K NOVÝM MAGNETŮM BEZ VZÁCNÝCH ZEM

Výzva: 17. Veřejná grantová soutěž
Hlavní řešitel: prof. RNDr. Mojmír Šob, DrSc.

Instituce: CEITEC
Oblast: Materiálové vědy


Od antifázových hranic k novým magnetům bez vzácných zemin Výzkumný tým prof. Mojmíra Šoba z CEITEC získal téměř 8 miliónů jádrohodin na projekt zabývající se analýzou vlivu antifázových (AF) hranic na magnetické vlastnosti intermetalických sloučenin a na jejich termodynamickou i mechanickou stabilitu. Tyto informace jsou potřebné pro úspěšný vývoj nových magnetických materiálů. Projekt se zaměří na slitiny na bázi Fe-Al, ve kterých podle nedávných experimentů zlepšují AF hranice některé magnetické charakteristiky až o desítky procent. Získaný výpočetní čas využije výzkumný tým ke studiu vlastností konvenčních magnetů (bez prvků vzácných zemin) na bázi Fe-Al a k pochopení příslušných fyzikálních mechanismů, jejichž znalost je nutná pro vylepšení vlastností těchto magnetických materiálů.



POTENCIÁL NEURONOVÉ SÍTĚ PRO VÝVOJ ZEOLITŮ „IN SILICO“

Výzva: 17. Veřejná grantová soutěž
Hlavní řešitel: RNDr. Lukáš Grajciar, Ph.D.

Instituce: Univerzita Karlova v Praze
Oblast: Materiálové vědy


 

Lukáš Grajciar získal přes 2 milióny jádrohodin na projekt, který se bude zabývat designem nových katalyzátorů „in silico“, jako jsou například zeolity. Zeolity mají velký potenciál pro vývoj nových „zelených“ technologií, neboť se jedná o nejdůležitější průmyslové katalyzátory, které se používají zejména při zpracování ropy a v petrochemii. Lukáš Grajciar s kolegy Andreasem Erlebachem, Christopherem J. Heardem a Petrem Nachtigallem využijí svůj výpočetní čas pro simulace využívající silová pole na bázi hlubokých neuronových sítí pro screening rozsáhlých databází kandidátních struktur a jejich modelování v provozních podmínkách s bezprecedentní přesností. Výsledky projektu poskytnou hlubší vhled do struktury a stability existujících a hypotetických zeolitů, které dosud nebyly syntetizovány a ke zlepšení katalytických vlastností zeolitů všeobecně.



MOLEKULÁRNÍ A MESOSKOPICKÉ SIMULACE VODNÝCH ROZTOKŮ V NEHOMOGENNÍM PROSTŘEDÍ

Výzva: 16. Veřejná grantová soutěž
Hlavní řešitel: Ing. Barbora Planková, Ph.D.

Instituce: Akademie věd ČR
Oblast: Materiálové vědy

 

Na molekulární a mesoskopické simulace vodných roztoků v nehomogenním prostředí získala Barbora Planková z Ústavu chemických procesů Akademie věd ČR více než 1 milion jádrohodin. Vodné roztoky jsou všudypřítomné. Najdeme je v přírodě, průmyslových procesech i v každodenním životě. Pro ochranu zdraví či životního prostředí je proto pochopení jejich chování v nehomogenních prostředích klíčové. Planková spolu s kolegy Karlem Šindelkou a Martinem Lísalem využijí superpočítač pro tři výzkumné oblasti. První je rozhraní grafen a vodný elektrolyt. Grafenu se přezdívá zázračný materiál 21. století. Například pro odsolování vody či její čištění by se mohly využívat právě grafenové membrány. Nejdříve je však důležité porozumět základním procesům na molekulární úrovni, které bude autorka projektu studovat pomocí superpočítače. Druhou oblastí jsou iontové povrchově aktivní látky, které se používají například v avivážích. Část přidělených výpočetních prostředků bude využita pro studium chování těchto aktivních látek a jejich interakcí s měkkými povrchy – klíčovými aspekty jejich funkčnosti. Poslední oblastí je rozpustnost malých molekul v interpolyelektrolytových komplexech, která ovlivňuje účinnost léčiv či odstraňování znečišťujících látek.



VYSOCE VÝKONNÝ SCREENING ORGANOKOVOVÝCH STRUKTUR PRO SEPARACI OXIDU UHLIČITÉHO ZE SMĚSI SPALOVACÍCH PLYNŮ ZA VLHKÉHO STAVU

Výzva: 16. Veřejná grantová soutěž
Hlavní řešitel: Pezhman Zarabadi-Poor, Ph.D.

Instituce: CEITEC, Masarykova univerzita
Oblast: Materiálové vědy

 

Více než 3 miliony jádrohodin získal Dr. Pezhman Zarabdi-Poor z CEITEC za účelem identifikace nejvhodnějších organokovových struktur k oddělení oxidu uhličitého ze směsi spalin pomocí rozsáhlého systematického screeningu. Hlavním antropogenním zdrojem emisí oxidu uhličitého je spalování fosilních paliv. S ekonomickým růstem a vývojem průmyslu se jeho koncentrace v ovzduší stále zvyšuje, což vede ke globálnímu oteplování Země. Jednou z nejúčinnějších metod, jak odvrátit tento nechtěný fenomén a zachovat průmyslový rozvoj, je zachycování a ukládání oxidu uhličitého (Carbon Capture Sequestration, CCS). Jako efektivní řešení se v této souvislosti jeví zachycování oxidu uhličitého ze směsi plynů vznikajících při spalování (průměrně obsahují 15–16 % CO2). Superpočítač a výpočetní zdroje ve výši 3,3 miliony jádrohodin využije Zarabdi-Poor pro nalezení nejvhodnějších organokovových struktur, které poté budou syntetizovány a experimentálně ověřeny v laboratoři. Tento výzkum je součástí projektu COMPSTORE, jenž je financován programem Evropské unie Horizont 2020 v rámci Akce Marie Skłodowska-Curie a spolufinancován Jihomoravským krajem. Projekt je realizován v rámci výzkumné skupiny prof. Radka Marka a aktivně se na něm podílí student doktorského programu fyzikální chemie Esmaiel Farajpour Bonab.



POČÍTAČOVÉ NÁVRHY NOVÝCH LÉKŮ

Výzva: 14. Veřejná grantová soutěž
Hlavní řešitel: prof. Ing. Pavel Hobza, DrSc., FRSC

Instituce: Akademie věd ČR
Oblast: Materiálové vědy

 

Hlavním řešitelem projektu zaměřeného na vývoj metody pro navrhovaní nových léků pomocí počítačů je Pavel Hobza z Akademie věd ČR. Jedná se o jeho devátý superpočítačový projekt, kterému byly přiděleny výpočetní zdroje IT4Innovations. Cílem prací jeho výzkumné skupiny je vytvořit spolehlivou výpočetní strategii pro identifikaci nových ligandů, které se vážou na terapeuticky relevantní proteiny, jako jsou např. HIV proteáza, cyklindependentní kinázy a aldo-keto reduktázy. V současné době se zaměřují na vývoj spolehlivých protokolů pro virtuální prohledávání knihoven sloučenin, které mohou obsahovat i několik milionů chemických látek. Pro virtuální hledání léčiv tentokrát získal tým profesora Hobzy více než 6 milionů jádrohodin.



ÚČINKY BIOMECHANICKÝCH VLASTNOSTÍ LIPIDOVÝCH MEMBRÁN

Výzva: 14. Veřejná grantová soutěž
Hlavní řešitel: prof. Mgr. Pavel Jungwirth, CSc., DSc.

Instituce: Akademie věd ČR
Oblast: Materiálové vědy

 

Na výzkum makroskopických vlastností lipidových membrán se zaměří prof. Pavel Jungwirth z Ústavu organické chemie a biochemie AV ČR. S pomocí superpočítače a využití molekulární dynamiky bude simulovat chování lipidových dvojvrstev. U plazmatických membrán je důležité nejen jejich chemické složení (například jaké typy lipidů je tvoří), ale také jejich tvar. Jungwirthův tým se pokusí zjistit, jak tvar dvojvrstvy ovlivňuje interakce v membráně. Nové poznatky o tvarech membrány přinesou další možnosti pro regulace enzymů a dalších proteinů v buňkách.



STROJOVÉ UČENÍ PRO POPIS ZEOLITŮ

Výzva: 14. Veřejná grantová soutěž
Hlavní řešitel: Mgr. Miroslav Rubeš, Ph.D.

Instituce: Akademie věd ČR
Oblast: Materiálové vědy

 

Výzkumnou oblastí, do které spadají projekty s nejvyššími alokacemi nejen u nás, jsou materiálové vědy. Do této oblasti patří i projekt Miroslava Rubeše z Ústavu organické chemie a biochemie Akademie věd ČR, který získal téměř 2 miliony jádrohodin. Zaměřuje se na zeolity, které se využívají jako detergenty, katalyzátory a adsorbenty. V roce 2017 činil trh se zeolity ve světě asi 30 miliard dolarů. Cílem Rubešova projektu je využít algoritmy strojového učení pro vytvoření modelu, který může pomoci hlubšímu porozumění jevů probíhajících v zeolitických materiálech.



SPRÁVNOST A PŘESNOST PRO MOLEKULÁRNÍ KRYSTALY II

Výzva: 13. Veřejná grantová soutěž
Hlavní řešitel: Mgr. Jiří Klimeš, Ph.D.

Instituce: Univerzita Karlova
Oblast: Materiálové vědy

 

Jiří Klimeš a jeho tým získal téměř 2 miliony jádrohodin na vývoj metod pro simulace materiálů. Jeho projekt Správnost a přesnost pro molekulární krystaly využívá poznatky kvantové chemie a přístupy používané pro popis pevných látek a získal na něj i prestižní Startovací grant Evropské výzkumné rady. V přírodě i průmyslu hrají molekulární pevné látky (molekulární krystaly) důležitou roli. Uveďme si například metan hydrát, tzv. hořící led, potenciálně velmi významný zdroj energie, polární čepice bohaté na oxid uhličitý na Marsu a léky v pilulkách. Některé molekulární krystaly mají zvláštní a přitom důležité vlastnosti. Příkladem je polymorfismus, schopnost existovat v různých strukturách při stejných podmínkách, který může být zásadní pro účinnost léků v těle. Cílem projektu Jiřího Klimeše je vyvinout metody, kterými bude možné spolehlivě vypočítat vazebné energie v materiálech jako jsou molekulární krystaly, což pomůže pochopit jejich vlastnosti. Superpočítač Salomon skupina využije pro získání vazebných energií 13 vybraných molekulárních krystalů.



OPTIMALIZACE MATERIÁLŮ PRO NOVÝ TYP LITHIOVÝCH BATERIÍ

Výzva: 12. Veřejná grantová soutěž
Hlavní řešitel: Ing. Dominik Legut, Ph.D.

Instituce: IT4Innovations
Oblast: Materiálové vědy

 

Náš kolega Dr. Dominik Legut se zabývá výzkumem lithium- -kovových baterií. Lithium-kovové baterie mají na rozdíl od lithium-iontových baterií vyšší energetickou hustotu a dokážou uchovat až 10x více energie. Anody z lithia nicméně čelí mnoha výzvám kvůli problémům s nízkou nabíjecí účinností, změnou objemu při nabíjení/vybíjení ale zejména s dendritickým růstem. V roce 2017 publikoval Dr. Legut společně s kolegy z USA, Číny a Singapuru článek na téma ochranné filmy pro lithium- -kovové baterie v magazínu Advanced Energy Materials s impakt faktorem 16. Speciální ochranné dvoudimenzionální filmy o tloušťce několika atomů totiž dokážou zabránit propojení elektrod (a následnému nebezpečnému zkratu), ke kterému může dojít kvůli dendritickému růstu na lithiových anodách. Nyní získal Dr. Legut 8 milionů jádrohodin na výzkum optimální struktury lithiových anod. S dalšími kolegy se bude snažit navrhnout optimální materiál pro lithiové anody pomocí prediktivních algoritmů, výpočtů chemické stability a mechanických vlastností.



VÝVOJ VÝPOČETNÍHO KÓDU PRO RELATIVISTICKOU SPEKTROSKOPII (RESPECT) KE STUDIU KOMPLEXNÍCH SLOUČENIN TĚŽKÝCH KOVŮ PRO LÉČBU RAKOVINY

Výzva: 12. Veřejná grantová soutěž
Hlavní řešitel: Mgr. Jan Vícha, Ph.D.

Instituce: Univerzita Tomáše Bati ve Zlíně
Oblast: Materiálové vědy

 

Jednou z léčebných metod rakoviny je chemoterapie. Nejužívanějším chemoterapeutikem jsou léky na bázi platiny. Klíčovým krokem pro jejich další vývoj je důkladnější pochopení struktury, vlastností, dynamiky a reakčních mechanismů těchto léků. Projekt Dr. Jana Víchy z Univerzity Tomáše Bati ve Zlíně navazuje na výsledky jeho předešlých výzkumů a také na výsledky jeho projektu z naší 9. veřejné grantové soutěže. Cílem nového projektu, který tentokrát získal 1 134 000 jádrohodin, je zvýšit prediktivní schopnosti a přesnost výpočtů spektroskopických vlastností komplexních sloučenin platiny v programu ReSpect, který vyvíjí partnerská organizace projektu – Artic University of Norway. Nově upravený kód programu ReSpect bude nejprve testován pomocí výpočtů magnetické rezonance jednoduchých platinových chemoterapeutik, jako je cisplatina a oxaliplatina v roztoku. Výzkumné práce budou poté rozšířeny na simulace nových pokročilých nosičů platinových léčiv, což je také hlavním tématem projektu podpořeného Grantovou agenturou ČR „Pokročilé nosiče platinových léčiv“, jehož řešitelem je také Dr. Vícha. Alokované výpočetní zdroje budou využity na testování upraveného kódu a pro relativistické kvantově chemické výpočty v programu ReSpect pro predikci a analýzu parametrů magnetické rezonance u komplexních sloučenin těžkých kovů.



MOLEKULÁRNÍ SIMULACE MATERIÁLŮ NA BÁZI CÍNU PRO EXTRÉMNÍ ULTRAFIALOVOU LITOGRAFII

Výzva: 11. Veřejná grantová soutěž
Hlavní řešitel: prof. RNDr. Petr Slavíček, Ph.D.

Instituce: Vysoká škola chemicko-technologická v Praze
Oblast: Materiálové vědy

 

Jak dokáže cílené vysokoenergetické záření změnit materiál? K jakým konkrétním změnám na molekulární úrovni dojde? Chemické změny materiálů pod vlivem fotonů o vysoké energii zkoumá tým pod vedením prof. Petra Slavíčka v Laboratoři teoretické fotodynamiky na Vysoké škole chemicko-technologické v Praze. Jejich projekt „Molekulární simulace materiálů na bázi cínu pro extrémní ultrafialovou litografii (EUV)“ získal 1 082 000 jádrohodin. Cílem projektu je popsat molekulární změny při ionizaci organocínatých sloučenin (tzv. Sn-O klecí) extrémním ultrafialovým zářením. Tyto sloučeniny mohou sloužit jako tzv. fotorezistní materiály pro EUV litografii. Jedná se o litografii nové generace pro nanometrové rozměry, využitelnou při efektivní výrobě nových počítačových čipů. Metoda je založena na změně fyzikálně-chemických vlastností fotorezistů (např. jejich rozpustnosti) po EUV ozáření. Ozářením specifických míst materiálu Jak dokáže cílené vysokoenergetické záření změnit materiál? může mít výsledná struktura rozlišení do 10 nm, což je hranice dnešních komerčních čipů. Značná výpočetní náročnost molekulových simulací ionizovaných Sn-O sloučenin je dána bohatou elektronovou strukturou cínu. Simulace jediné trajektorie trvající půl pikosekundy vyžaduje téměř týden počítačového času na běžných procesorech. Náš superpočítač Salomon, který má dohromady 76 896 jader (procesory Intel Haswell a akcelerátory Intel Xeon Phi), umožní výzkumníkům provést rozsáhlé simulace, které by jinak nebyly prakticky proveditelné.



POČÍTAČOVÉ NÁVRHY NOVÝCH LÉKŮ

Výzva: 10. Veřejná grantová soutěž
Hlavní řešitel: prof. Ing. Pavel Hobza, DrSc., FRSC

Instituce: Ústav organické chemie a biochemie Akademie věd ČR
Oblast: Materiálové vědy

 

Prof. Pavel Hobza z Ústavu organické chemie a biochemie Akademie věd České republiky se zabývá počítačovými návrhy nových léků. Jeho projekt „In silico drug design“ získal 7 425 000 jádrohodin v rámci 10. Veřejné grantové soutěže. Získané výpočetní prostředky využije tým prof. Pavla Hobzy na vývoj metod pro virtuální hledání léčiv. Tento přístup využívá molekulární modelování (dokování a skórování) k identifikování vhodných látek pro vývoj nových léčiv a je prakticky využíván farmaceutickým průmyslem. Kvůli vysokým požadavkům na rychlost výpočtů je však stále spolehlivost těchto metod nízká. S pomocí našich supervýkonných počítačů dokáží vědci z týmu prof. Hobzy předvídat pomocí přesných kvantově-chemických výpočtů jak strukturu léku v aktivním místě proteinů tak i jejich schopnost se vázat, což napovídá o jejich léčebných účincích. Nedávno publikovaný přístup je v současné době využíván ve spolupráci s předními farmaceutickými společnostmi.