Zprostředkováváme efektivní využití naší špičkové národní superpočítačové infrastruktury za účelem zvýšení konkurenceschopnosti a inovativnosti české vědy a průmyslu. IT4Innovations primárně poskytuje výpočetní čas výzkumníkům a akademickým pracovníkům z České republiky v rámci veřejné grantové soutěže. V rámci této soutěže bylo v letech 2013—2018 podpořeno 528 projektů v celkovém objemu 533 miliónů jádrohodin, přičemž požadavky výzkumníků v tomto období přesáhly 670 miliónů jádrohodin (jádrohodina = jedno procesorové jádro na hodinu).

Vybrané ukazatele

Počty projektů v jednotlivých vědních oblastech v 2019 [%]

 

 

Využití superpočítače jednotlivými institucemi v 2019 [%]

 

 
10+
 institucí využívajících výpočetní čas
2 000+
uživatelů
530+
 projektů na výp. času
550+
miliónů jádrohodin

Co se u nás počítá

Podporujeme špičkový výzkum a inovace ve všech vědních oblastech.

 
Vybrané projekty z 18. Veřejné grantové soutěže


Meze přesnosti metody kvantové Monte Carlo v limitě slabé interakce

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Ing. Matúš Dubecký, Ph.D.
Instituce: Ostravská univerzita
Oblast: Materiálové vědy

Více než 4 miliony jádrohodin získal Matúš Dubecký na výzkum zaměřený na stanovení mezí přesnosti metody Fixed-node diffusion Monte Carlo (FNDMC) pro nekovalentní interakce. Nekovalentní interakce hrají klíčovou roli v mnoha oblastech výzkumu, např. v materiálové vědě nebo vývoji léčiv. Tým Matúše Dubeckého se zaměří na provedení srovnávací studie, navazující na předešlý výzkum a použití metody FNDMC u 2D materiálů, jejichž vlastnosti jsou ovlivněné nekovalentními interakcemi molekul, nebo 1D vodičů na jejich površích. Cílem tohoto projektu je za pomoci superpočítače zjistit míru spolehlivosti metody FNDMC, která je v současné době hojně využívána jako kvantová referenční metoda pro velké nekovalentní systémy. Kromě hlubšího fyzikálního náhledu do metodologie FNDMC a návrhu možných vylepšení, povedou výsledky k lepší kontrole přesnosti a racionálnějšímu použití této metody nejen pro velké systémy.


Ondřej Chrenko získal více než 600 000 jádrohodin výpočetního času na projekt, ve kterém se bude zabývat procesy provázejícími vznik planet. Podle moderních scénářů planety vznikají akumulací balvanů o velikosti centimetr až metr, jejichž dynamika je ovlivněna aerodynamickým třením o okolní plynný disk. Toto tření jednak způsobuje radiální drift balvanů v disku a rovněž zvyšuje účinnost gravitačního zachycení balvanů rostoucí planetou. Pokud však planeta dosáhne jisté kritické hmotnosti, vytvoří v plynném disku tlakovou bariéru, ve které se balvany začnou hromadit, a růst planety ustane. Cílem tohoto projektu je prozkoumat vývoj balvanů hromadících se v tlakové bariéře. Ondřej Chrenko použije superpočítače centra IT4Innovations k 2D a 3D simulacím systému dvou tekutin (reprezentujících plyn a pevné částice), aby ověřil, zda v tlakové bariéře dochází k hydrodynamickým nestabilitám. Tyto nestability by mohly koncentrovat balvany do shluků, umožnit jejich gravitační kolaps a vytvořit tak zárodek zcela nové planety. Cílem projektu je prostudovat pomocí lokálních simulací s vysokým rozlišením, zda uvnitř tlakové bariéry může docházet k hydrodynamickým nestabilitám, jako např. na obrázku vpravo (pozn. obr. vpravo je převzat z článku Benítez-Llambay a kol. 2019).


Vznik planet shlukováním balvanů

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: RNDr. Ondřej Chrenko, Ph.D.
Instituce: Astronomický ústav Univerzity Karlovy v Praze
Oblast: Astrofyzika



Proteinová přitažlivost a selektivita pro buněčné membrány

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Doc. RNDr. Robert Vácha, Ph.D
Instituce: CEITEC
Oblast: Vědy o životě

Pro první periodu svého výzkumu, ve kterém se Robert Vácha zaměří na proteinovou přitažlivost a selektivitu pro buněčné membrány, získal téměř 2,9 milionů jádrohodin. Prostorová a časová organizace proteinů v buňce je klíčovým aspektem pro pochopení složitých procesů v živých buňkách. Důležitou složkou jsou periferní proteiny, které jsou pro správnou funkci organizovány na membránách specifických organel. Ovšem vztah mezi proteinovou sekvencí a její membránovou preferencí však dosud není znám. Cílem navrhovaného projektu je identifikovat, kvantifikovat a vysvětlit přitažlivost proteinů pro membrány se specifickým lipidovým složením. Tým Roberta Váchy vyvine výpočetní metodu pro stanovení vazebné volné energie proteinů a jejich mutantů k membránám se specifickým složením lipidů. Použití této metody s využitím výpočetních zdrojů IT4Innovations poskytne molekulární pochopení, které umožní určit preferovanou lokalizaci proteinů v buňkách a může být využito pro vývoj nových biomarkerů proteinů, senzorů a léků.


Více než 1 milion jádrohodin využije Aleš Podolník k simulaci sondové diagnostiky tokamaku COMPASS-U, právě navrhovaného a konstruovaného zařízení pro výzkum jaderné fúze na světové úrovni. Toto zařízení umožní udržení plazmatu v podmínkách blízkých těm v budoucích fúzních reaktorech ITER a DEMO. Jednou z plánovaných oblastí výzkumu je také návrh vnitřních komponent přicházejících do styku s plazmatem, který vyžaduje komplexní diagnostické vybavení. To bude využívat jak stávající, tak i nově vyvíjené diagnostické systémy reflektující unikátní vlastnosti plazmatu v tokamaku COMPASS-U. Jednou z takových diagnostik jsou Langmuirovy sondy, které při správném návrhu umožňují měřit teplotu a hustotu elektronů nezbytnou pro výpočet tepelného namáhání vnitřních komponent. Návrh i využití sond pro měření v tokamaku s extrémními parametry plazmatu však vyžaduje značné úsilí. Cílem výzkumu Aleše Podolníka a Michaela Komma je simulace sond, které budou přizpůsobeny různým variantám a tvarovým možnostem vnitřních komponent v tokamaku, jež budou v přímém styku s plazmatem. Z předešlých výzkumů vyplývá, že správný návrh sondy je důležitý nejen z provozního hlediska, například pro zamezení roztavení sondy pod extrémním tokem energie z plazmatu, ale především pro maximální korektnost a přesnost získaných fyzikálních dat. 

Simulace sondových diagnostik pro tokamak COMPASS-Up

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Mgr. Aleš Podolník, Ph.D
Instituce: Ústav fyziky plazmatu AV ČR
Oblast: Vědy o Zemi



Vliv hmotných hvězd na složení kulových hvězokup

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Dr. Michail Kourniotis
Instituce: Astronomický ústav AV ČR
Oblast: Astrofyzika

Michalis Kourniotis z Astronomického ústavu AV ČR získal pro výzkum vlivu hmotných hvězd na složení hvězdokup 718 000 jádrohodin našeho výpočetního času. Kulové hvězdokupy jsou koncentrace hvězd sférického tvaru o velikostech řádově desítek světelných let, které obsahují statisíce až miliony velmi starých hvězd. Typicky se nacházejí ve sférickém halu Mléčné dráhy a dalších galaxií. Původně se předpokládalo, že se skládají ze stejně starých hvězd, ale nedávno bylo zjištěno, že jsou hostiteli několika generací hvězd různého věku a chemického složení. Numerické metody pro simulaci nestacionárního větru ve hvězdokupách jsou použity pro získání znalostí o chování plynu uvnitř mladé hvězdokupy, především o tepelné nestabilitě, která může vést ke vzniku nových hvězd. Nejnovější modely vývoje hvězd poskytují základní vstupní parametry pro určení množství hmoty a energie, které do hvězdokupy vkládají hmotné hvězdy ve formě extrémně rychlých hvězdných větrů a výbuchů supernov. Michail Kourniotis s kolegy Richardem Wünschem a Barnabásem Barnou využijí superpočítač k vytvoření 3D simulací s vysokým rozlišením, které poskytnou informace o vzniku několika hvězdných generací v kulových hvězdokupách. Cílem projektu je rovněž studium vlivu extrémních typů hvězd na vývoj větru ve hvězdokupách a jeho prostorovém rozložení.


Více než 2,8 milionů jádrohodin výpočetního času IT4Innovations získal tým Jiřího Klimeše na projekt, ve kterém se zaměří na preciznost a přesnost výpočtu vazebných energií krystalů, obzvláště těch, které jsou vázané nekovalentními vazbami. Takovéto materiály jsou důležité jak v přírodě, tak v průmyslu, příkladem jsou metanové klatráty na dně moří, krystaly léčiv, nebo vrstevnaté systémy jako je grafit. Mezi jejich zajímavé vlastnosti patří polymorfismus – schopnost mít i za stejných podmínek různou krystalickou strukturu. Jedním z cílů tohoto projektu je využití superpočítače k vývoji metody, která by umožnila spolehlivý popis stability různých polymorfů nebo různých krystalických fází materiálů. Jedná se o projekt základního výzkumu, jehož cílem je pochopení limitů přesnosti metod používaných v současnosti a vývoj metod s vyšší přesností, které se uplatní pro simulace materiálů v budoucnu. Výzkumný tým Jiřího Klimeše chce také integrovat vyvinuté skripty pro přípravu a analýzu výpočtů do „balíčků“ používaných pro automatizované pracovní postupy. Toto by mělo zajistit, aby metody určené pro přesné výpočty vazebných energií byly jednoduše použitelné jinými výzkumnými skupinami, a také zvýšit reprodukovatelnost takovýchto výsledků.


Preciznost a přesnost vazebných energií rozlehlých systémů IV

Výzva: 18. Veřejná grantová soutěž
Hlavní řešitel: Mgr. Jiří Klimeš, Ph.D.
Instituce: Univerzita Karlova
Oblast: Materiálové vědy

 

 

Publikace s přehledy projektů našich uživatelů