e6ce430d-9a14-439f-b59e-e5da15b3c608

2013

 

FROLOV, A.; HÚSEK, D.; BOBROV, P.; MOKIENKO, O.; TINTĚRA J. Sources of Electrical Brain Activity Most Relevant to Performance of Brain-computer Interface Based on Motor Imagery. In Brain-Computer Interface InTech. ISBN 980-953-307-960-3. Doi: http://dx.doi.org/10.5772/55166.

 

KRÖMER, P.; OWAIS, S.; PLATOŠ, J.; SNÁŠEL, V. Towards new directions of data mining by evolutionary fuzzy rules and symbolic regression. In Computers & Mathematics with Applications. Volume 66, Issue 2. ISSN 0898-1221. Doi 10.1016/j.camwa.2013.02.017. (In Press, Corrected Proof available online) http://www.sciencedirect.com/science/article/pii/S0898122113001284.

 

FROLOV, A.; HÚSEK, D.; POLYAKOV, P.Y. Two Expectation Maximization Algorithms for Boolean Factor Analysis. In Neurocomputing. Doi: http://dx.doi.org/10.1016/j.neucom.2012.02.055.

2012

 

BRANDSTETTER P.; KRECEK T. Speed and Current Control of Permanent Magnet Synchronous Motor Drive Using IMC Controllers. In Advances in Electrical and Computer Engineering. Volume 12, Issue 4, p. 3-10, 2012. ISSN 1582-7445. Doi: http://dx.doi.org/10.4316/AECE.2012.04001.

 

SEDANO, J.; GONZÁLEZ, S.; HERRERO, A.; BARUQUE, B.; CORCHADO, E. Mutating network scans for classifier ensemble assessment. In Logic Journal of the IGPL. Oxford University Press.

 

BESHAH, T., EJIGU, D., ABRAHAM, A., SNÁŠEL, V., KRÖMER, P.: Knowledge discovery from road traffic accident data in ethiopia: Data quality, ensembling and trend analysis for improving road safety. In Neural Network World. Volume 22, Issue 3, p. 215 – 244. ISSN 1210-0552. http://isda2001.softcomputing.net/nnw2012_tibebe.pdf.

 

KOLOSENI, D.; LAMPINEN, J.; LUUKKA P. Optimized Distance Metrics fo Differential Evolution based Nearest Prototype Classifier. In Expert Systems with Applications. Volume 39, Issue 12, p. 10564-10570. Elsevier. ISSN 0957-4174. Doi: http://dx.doi.org/10.1016/j.eswa.2012.02.144.

 

PENHAKER, M.; KREJCAR, O.; KASIK, V.; SNÁŠEL, V. Cloud computing environments for biomedical data services. In Proceedings of the 13th international conference on Intelligent Data Engineering and Automated Learning, IDEAL’12, p. 336–343. Berlin, Heidelberg, 2012. Springer-Verlag.

2011

 

BARUQUE, B., Corchado, E., Yin, H. THE S2-ENSEMBLE FUSION ALGORITHM. In International Journal of Neural Systems. Volume 21, Issue 06, p. 505–525. ISSN 0129-0657. Doi: http://dx.doi.org/10.1142/S0129065711003012.

 

FROLOV, A., HÚSEK, D., POLYAKOV, P.Y.; SNÁŠEL, V. New BFA Method Based on Attractor Neural Network and Likelihood Maximization. Neurocomputing, Elsevier (S)

 

3. ročník Dne národních výzkumných infrastruktur
15. kolo veřejné grantové soutěže
Veřejná grantová soutěž je vypisována pravidelně 3x ročně pro zaměstnance výzkumných, vědeckých a vzdělávacích organizací, […]
IT4Innovations Newsletter Q3/2018
Newsletter Q3/2018
Výzva k zapojení podniků do testování platformy InnoHPC Lab
Výzva k zapojení podniků do testování platformy InnoHPC Lab
8. výzva PRACE SHAPE – výpočetní čas pro malé a střední podniky
Od 1. října je spuštěna 8. výzva k podávání žádostí do programu SHAPE. Do 1. […]
Všechny aktuality