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Concept and approach Weather-based renewable-energy prediction

EVEREST focuses on High Performance Big Data Analytics (HPDA) applications. The use case combines deterministic high resolution weather forecast processed by WRF
models (2,5 km grid) and improved by global data assimilation, with an application based on
Machine Learning (ML) algorithms analysing historical site specific datasets to obtain wind
farms generation forecast.

« Future Big Data systems will be data-driven.

« Complex heterogeneous and reconfigurable architectures are difficult to program.

GOAL: achieve better accuracy of forecast products for the day-ahead energy market, intraday

The EVEREST project aims at developing a holistic approach for co-designing computation energy market, and next continuous energy trading market, reducing imbalances costs.

and communication in a heterogeneous, distributed, scalable, and secure system for HPDA.
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« combination of compiler transformations, high-level synthesis, and memory management;

« efficient monitoring of the execution with a virtualisation-based environment. T——
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EVEREST proposes a design environment that combines state-of-the-art, stable programming
models, and emerging communication standards with novel and dedicated domain-specific
extensions. The EVEREST approach will be validated on three industrial use cases, one is related

to wind energy production; the application is developed during the project lifetime.
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The specific datasets of 5 Wind Farms will be used to validate the predictions. Selection of algorithm Kernel-Ridge.

The application is written in Python,

Validation path

State-of-the-art KPI have been selected to evaluate the accuracy of wind power generation. Continuous analysis

Pycharm exploiting Jupyter; Scikit-learn
modules are used for kernel methods;
of the results and experimentation of different strategies to better customise the workflow. Strong collaboration Keras and Tensorflow libraries for deep

with CIMA to evaluate the possible improvements to the WRF parameters to better understand the physics learning.

behind the prediction.

MAE aggregated by levels of error of wind speed WRF adjusted with log law vs real wind speed MAE aggregated by different levels of wind speed adjusted with log law
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