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Introduction 

 

In terms of the workflow, numerical modelling can be divided into three phases: (i) pre-

processing, (ii) solving of the governing equations and (iii) visualisation of the results. When 

using discretization methods such as Finite Element Method (FEM) or Finite Volume Method 

(FVM), pre-processing consists of preparation of geometry, its spatial discretization and 

application of boundary conditions. In most cases of engineering practice, we are dealing with 

complicated geometry for which it is impossible to create a computational mesh by trivial 

methods, and more comprehensive methods must be used. This text discusses the possibility of 

using the open-source tool Gmsh for mesh creation in a robust way, even for very complex 

geometries. 

In the case of using open-source tools or software, separate independent libraries often 

must be used to do certain operations. For example, geometry preparation, finite element mesh 

generation, solving of the governing equations and results visualization are commonly 

performed using different libraries. In many cases different file formats are used for data 

exchange among those tools or software. 

When dealing with complex geometries, designers and engineers are equipped with 

Computer-Aided Design (CAD) or more generally Computer Aided Engineering (CAE) software. 

For efficient and convenient preparation of the computational model, it is desirable that when 

transferring the model geometry via one of the commonly used exchange formats (. step, .iges, 

.stl, ...) to the finite element mesh generator, the information necessary for the definition of 

groups of finite elements and nodes are also transferred. During creation of geometry, it is much 

more efficient to assign a specific “flag” to those geometrical entities (volumes, areas), which 

will later be used for application of boundary conditions. This “flag” will then be used by a 

software for mesh generation to create separate group of elements and nodes belonging to this 

particular geometrical entity. 

If the CAD software allows to assign names to selected geometric entities and then 

transfer them along with the geometry to the library for generation of finite element mesh via 

one of the exchange formats, then it is possible to assign the nodes and elements, belonging to 

these entities, to their corresponding groups automatically i.e., without any user intervention, 

and then export them along with the finite element mesh for convenient application of the 

boundary conditions later. 

This document discusses a software library under development, which provides automated 

workflow described above during the preparation of the finite element model. 

Its input is, in addition to a set of parameters and options for creating and exporting a 

finite element mesh, the geometry of the model with named entities in a particular exchange 

format. The output of this library is then a file containing all the entities of the finite element 

mesh, in particular the groups of mesh nodes and elements corresponding to the geometric 

entities named by the user during geometry pre-processing. 
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The document is structured into five chapters. The first chapter is dedicated to a general 

description of the Gmsh library, which has been chosen as the finite element meshing library on 

which the software tool will be built due to its extensive documentation and sophisticated 

application programming interface (API). 

In the second chapter, a review of exchange formats for geometry transfer between CAE 

software packages was carried out. The basic requirement was the ability of the format to 

transfer the mentioned information about user named geometrical entities from the CAE 

software and the ability of the Gmsh library to read this information. Three formats that are 

available in Gmsh library (STEP, IGES and STL) were investigated. 

The third chapter describes in detail the structure of the library under development, its 

operation, installation procedure and usage. Emphasis was placed on the description of the 

library input files. The format, content, and purpose of the GCF configuration file and the 

requirements for the geometry input files, the file name format and the necessary partitioning 

of the model into separate files. 

In the fourth chapter, selected demonstration examples were described in detail to show 

the most important features of the developed library. All the test examples developed by the 

author are part of the library and can be found in the "examples" directory located in the root 

directory of the library. 

The final chapter is dedicated to the investigation of parallel scalability of 2D and 3D 

meshing algorithms of Gmsh, measured in the form of strong scalability on multiple test 

problems. 
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1 Gmsh Library 

 

Gmsh[1] is an open-source software package for geometry pre-processing, finite element 

discretization and post-processing, distributed under the GNU GPL version 2 or later (General 

Public License)[2]. The Gmsh library contains several tools for working with CAD geometry and 

post-processing of the created finite element mesh. To communicate with the library, both the 

Graphical User Interface (GUI) and the API via C[3], C++[4], Python[5], Julia[6] programming 

languages or the native language of the Gmsh library (ASCII files with the .geo extension) can 

be used. 

The copyright holders of the Gmsh library since 1997 are Professor Christophe Geuzaine 

of the Department of Electrical Engineering and Computer Science at the University of Liege 

and Professor Jean-François Remacle of the Institute of Mechanics, Materials and Civil 

Engineering at the Catholic University of Leuven. Since the Gmsh library is distributed under the 

GNU GPL version 2 or later, in accordance with this license, distribution of the software tool 

under development is also only possible under the GNU GPL version 2 or later. The installation 

of the library itself is done by simply unpacking the compressed directory, which is available for 

download for Windows, Linux and MacOS operating systems as a stable and development 

version along with a software development kit (SDK), documentation and other information is 

available on the project website[7]. 
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2 Data Exchange Formats 

 

Of the plethora of exchange formats, those supported by the Gmsh library as model geometry 

input formats were explored, i.e. STEP, IGES and STL. The aim was to find out which of those 

three, if any, allow to write the arbitrarily chosen names of geometric entities, i.e. surfaces or 

volumes, in addition to the geometric information and then import them into the Gmsh library 

environment. 

 

2.1 STEP Format 

 

The name of the STEP format, characterized by the extension .step or .stp, is based on the 

English "STandard for Exchange of Product model data". The format itself is defined by ISO 

10303 and its history dates to the mid-1980s. However, it is undoubtedly one of the most 

widely used formats for geometry exchange between CAE applications, and its development 

continues to this day. In addition to parametric geometry representation, the STEP format allows 

for transfer of much more information than just user defined geometrical entity names (e.g., 

surface finish information, dimensions, tolerances etc.)[8]. Fig. 1 shows a preview of the format, 

where the red box highlights the names of surfaces and curves entered by the user in the PTC 

Creo commercial software environment. However, all attempts to import these assigned names 

from the STEP format into the Gmsh library environment have been unsuccessful. Thus, it can 

be assumed that the Gmsh library does not yet fully support this feature in case of the STEP 

format. 

 

 

Fig. 1 Preview of a file in STEP format, created in the PTC Creo commercial software environment. 
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2.2 IGES Format 

 

The IGES format, or "Initial Graphics Exchange Specification", is historically even older than the 

STEP format and its last version 5.3 was published in 1996[9]. However, it is still a very 

widespread exchange format among CAE applications, which allows parametric representation 

of geometry. However, unlike the STEP format, it does not carry information about a volume of 

the solid. All geometry is thus considered as a shell. This is not a limiting shortcoming, however, 

since the volume can be assigned in the Gmsh library environment to any group of surfaces that 

together form a "watertight" enclosure of a portion of space. The IGES format also supports 

arbitrary names for geometric entities as shown in Fig. 2, where a preview of the format can be 

seen with the red-highlighted user-selected names of faces of the model geometry, created in 

the Altair Hypermesh commercial software environment. 

 

 

2.3 STL Format 

 

The STL format, whose name is derived from the English "STereoLithography", is widely used in 

industry for rapid prototyping or 3D printing, or in medicine for visualizing CT (Computed 

Tomography) scans and allows to store data in ASCII or binary form. However, this format 

represents geometry by a finite number of triangles, determined by their vertices and normals, 

arranged in groups to which names can be assigned[10]. Thus, it does not allow for parametric 

description of the geometry. However, named groups can be used to transfer user-named 

surfaces, as shown in Fig. 3, where a preview of the format in the ASCII form can be seen with 

the group names marked in red, each representing a group of user-named surfaces. 

Unfortunately, the Gmsh library does not yet allow the group names (i.e., face names) to be read 

from STL files in binary form. Therefore, if the STL geometry files contain user-named faces, 

then the files must be in the ASCII form. 

Fig. 2 Preview of an IGES file created in the Altair Hypermesh commercial software environment. 
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2.4 Conclusion 

 

From investigation of the possibilities of exchange formats (STEP, IGES, STL) used in Gmsh 

library, we could conclude that STEP format cannot be used to transfer information about named 

geometric entities to the Gmsh library environment at the moment. However, the remaining 

formats investigated i.e., IGES and STL, can be used. 

 

Fig. 3 Preview of an STL file created in the Ansys SpaceClaim commercial software environment. 
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3 Structure, Functioning and Usage of the Library 

 

The purpose of the developed library is to automatize the preparation of finite element computational 

models. In addition to the discretization of general geometry in IGES or STL format by finite 

elements/volumes, it also allows for automatic assignment of elements and nodes to groups, 

corresponding to geometric entities (surfaces and volumes), that have been assigned an arbitrary name 

not containing dots during pre-processing in a suitable CAD software package. The developed library 

is written in Python version 3.10.x.  

In the root directory of the library there are: 

• The "lib" directory, 

• the "examples" directory with all the test problems created by the author, 

• the "doc" directory containing entire documentation for the library, 

• a launch file "GMTLaunch.py" to launch the tool, 

• the "Gmsh.py" script to launch the Gmsh GUI conveniently, 

• a configuration file with the extension .gcf (hereafter GCF), and 

• the license file LICENSE.txt. 

The "Lib" directory represents the library of the software tool itself. Along with the source code 

of the tool, it also contains the Gmsh library software development kit. The GCF file contains the 

user-specified settings for the finite element mesh generator. The LICENSE.txt file contains the exact 

wording of the GNU GPL version 2 license agreement. 

The input model geometry file(s) are placed in the job working directory. The tool also stores 

its outputs here i.e., the resulting finite element mesh file in user-selected format and a .log (hereafter 

LOG) file containing informative, warning and error messages through which the tool communicates 

with the user. The structure of the library is illustrated in Fig. 4. 
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3.1 GCF Configuration File 

 

The developed software tool requires two different inputs for its use. The first one is the GCF 

configuration file. This is an ASCII file with UTF-8 encoding. It can therefore be opened and 

modified as a regular text file in any of a plethora of word processing applications. Each line of 

Fig. 4 Structure of the developed library. 

 Gmsh_Meshing_Tool 

 lib 

  __pycache__ 

  gmsh 

  GMTImport.py 

  GMTMesh.py 

  writeToLogFile.py 

 examples 

  Compressor_Blade 

  Compressor_Blade_Creo 

  Compressor_Blade_Hypermesh 

  Cube 

  Cube_Blender 

  Cube_Creo 

  Cube_DesignModeler 

  Cube_Hypermesh 

  Cube_SpaceClaim 

  Cube_Hollow 

  Cube_Hollow_Blender 

  Cube_Hollow_Creo 

  Cubes 

  Cubes_Blender 

  Cubes_DesignModeler 

  Cubes_Hypermesh 

  Cubes_Hollow 

  Cubes_Hollow_Blender 

  Cubes_Hollow_Clustered 

  Cubes_Hollow_Clustered_Blender 

  Cubes_Hollow_Clustered_Hypermesh 

  Cubes_Misaligned 

  Cubes_Misaligned_Hypermesh 

  Cubes_Nested 

  Cubes_Nested_Blender 

  Femur 

  Femur_Blender 

  Ilium 

  Ilium_Blender 

  Inflation_Layers_Angled_Boundary 

  Inflation_Layers_Angled_Boundary_Blender 

  Inflation_Layers_Multiple_Volumes 

  Inflation_Layers_Multiple_Volumes_SpaceClaim 

  Scapula 

  Scapula_Blender 

  Turbine_Blade 

  Turbine_Blade_Hypermesh 

  doc 

  GMTLaunch.py 

  Gmsh.py 

  GMT_Configuration_File.gcf 

  LICENCE.txt 
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the file contains one parameter. The parameter name is always followed by the equals sign "=", 

followed by the parameter value itself, and finally by an optional informative label after the "#" 

character. Tables below contain a complete list of all parameters and their descriptions. These 

are divided into general parameters in Tab. 1, STL topology parameters in Tab. 2, global meshing 

parameters in Tab. 3, local meshing parameters in Tab. 4 and parameters for generation of 

inflation layers in Tab. 5. 

The parameter values can be one of the following data types: 

• The “Integer” data type represents whole numbers, 

• the “Float” data type represents decimal numbers, 

• the “Bool” data type represents logical values i.e., “True”, “False”, “Yes”, “No”, “1”, or “0”. 

• The “String” data type represents strings of Unicode characters (words) and finally  

• the “List” data type represents a list of values of the “String” data type, separated by a 

comma or semicolon. 

 

Tab. 1 List of the general parameters of the GCF configuration file. 

Parameter Name Default 

Value 

Data 

Type 

Description 

WorkingDirectoryPath — String Absolute path to the working directory. 

Name — String Job name. 

InputFormat 1 Integer Input geometry file format (1: IGES, 2: STL). 

GeometryTolerance 1⸱10-9⸱d Float Geometric tolerance, d represents the diagonal of the 

bounding box of the model geometry. 

MaxNumThreads 1 Integer Maximum number of CPU threads to use for 

meshing. 

OutputFormat 1 Integer Format of the output model mesh files (1: MSH,  

2: UNV, 3: VTK). 

Binary False Bool Save the mesh to a binary file if possible? 

LaunchGmsh False Bool Run Gmsh to see the result after finishing the task? 

 

Tab. 2 List of the STL topology parameters of the GCF configuration file. 

Parameter Name Default 

Value 

Data 

Type 

Description 

STLRemesh False Bool Parameterize and remesh the STL model geometry? 

STLFacetAngle 45. Float [°] Minimum angle between the normals of two 

adjacent triangles at which their common segment is 

already considered an edge. 

STLCurveAngle 180. Float [°] Minimum angle between two segments at which 

their common point is already considered a corner. 
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Tab. 3 List of the global meshing parameters of the GCF configuration file. 

Parameter Name Default 

Value 

Data 

Type 

Description 

MeshDim 3 Integer Number of dimensions of the resulting finite element 

mesh (0: 0D, 1: 1D, 2: 2D, 3: 3D). 

MeshAlgorithm 6 Integer 2D meshing algorithm (1: MeshAdapt,  

2: Automatic, 3: Initial mesh only, 5: Delaunay,  

6: Frontal-Delaunay, 7: BAMG, 8: Frontal-

Delaunay for Quads, 9: Packing of Parallelograms). 

MeshAlgorithm3D 10 Integer 3D meshing algorithm (1: Delaunay, 3: Initial mesh 

only, 4: Frontal, 7: MMG3D, 9: R-tree,  

10: HXT). 

MeshSizeFromCurvature 6 Integer Target number of segments per 2π radians of 

curvature. 

MeshSizeExtendFromBoundary True Bool Extend computation of mesh element sizes from the 

boundaries into the interior? 

MeshSizeMax 2⸱10-2⸱d Float Maximum global size of the finite elements. 

MeshSizeMin 0 Float Minimum global size of the finite elements. 

MinimumCircleNodes 0 Integer Minimum number of nodes per circle or ellipse. 

MinimumCurveNodes 0 Integer Minimum number of nodes per curve other than 

a line, circle, or ellipse. 

ElementOrder 1 Integer Order of the finite elements (1: linear, 2: quadratic,  

3: cubic). 

SecondOrderIncomplete True Bool Create incomplete 2nd order elements (8-node 

quads, 20-node hexas, etc.,)? 

SecondOrderLinear False Bool Create mid-side nodes of higher-order elements and 

nodes resulting from "subdivision" algorithms by 

simple linear interpolation? 

Optimize True Bool Optimize the mesh to improve the quality of 

tetrahedral finite elements? 

OptimizeNetgen False Bool Optimize the mesh to improve the quality of 

tetrahedral finite elements using the Netgen library? 

HighOrderOptimize 4 Integer Algorithm for optimization of higher order element 

mesh (0: none, 1: optimization, 2: elastic and 

optimization, 3: elastic, 4: fast curving). 
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Tab. 4 List of local meshing parameters of the GCF configuration file. 

Parameter Name Default 

Value 

Data 

Type 

Description 

LocalMeshSurfaces  String List of surfaces on which to enforce the local 

element size. 

LocalMeshVolumes  String List of volumes on which to enforce the local 

element size. 

LocalMeshSize  Float Target local size of the finite elements on the 

selected surfaces/volumes. 

LocalMeshGrowthRate  Float Rate of change of size of the neighboring elements 

near the selected surfaces/volumes. 

 

The foursome of local meshing parameters, see Tab. 4, can in the configuration file be 

declared repeatedly, i.e. separately for each group of geometric entities (surfaces and/or 

volumes). 

 

Tab. 5 List of parameters of the GCF configuration file for the generation of the inflation layers. 

Parameter Name Default 

Value 

Data 

Type 

Description 

InflationLayersSurfaces  String List of surfaces on which to generate inflation layers. 

InflationLayers  Integer Number of inflation layers to generate on the 

selected surfaces. 

InflationLayersMethod  Integer Method of specification of inflation layer thickness 

(1: Total thickness, 2: First layer thickness, 3: Total 

aspect ratio, 4: First layer aspect ratio, 5: Last layer 

transition ratio). 

InflationLayersThickness  Float Inflation layer thickness parameter according to 

specified method. 

InflationLayersGrowthRate  Float Rate of change of thickness of two neighboring 

inflation layers belonging to the selected surface. 

 

All surfaces on which the inflation layers are to be created must currently have identical 

values of parameters, as this functionality is still under development. These are in particular the 

InflationLayers, InflationLayersThickness, InflationLayersMethod and 

InflationLayersGrowthRate parameters, see Table 5. 

Length units of parameters GeometryTolerance, MeshSizeMax, MeshSizeMin, 

LocalMeshSize and InflationLayersThickness (when InflationLayersMethod = 1 or 

2) depends on geometry format. In case of IGS format it is millimetres. In case of STL format 

length units equal units in which the model geometry was exported from the geometry pre-

processor. 
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3.2 Requirements for the Geometry Files 

 

The second required input are the model geometry files. Files in IGES (with extension .igs or 

.iges) or STL (with extension .stl) format are accepted. However, depending on the format used, 

certain restrictions apply that impose requirements on the arrangement of the geometry files 

and their names. 

Each job of the tool consists of a one or more bodies, volumetric or planar. All bodies 

that are adjacent to each other form a so-called island, see Chyba! Nenalezen zdroj odkazů. 

a). Each island then consists of one or more bodies and those islands are not connected to each 

other. If the model consists of several disconnected islands, see Chyba! Nenalezen zdroj 

odkazů. b), it is then necessary to submit a job for each island separately. However, each a job 

is submitted, a separate process is assigned to it and the solution of the entire problem is thus 

parallelized at the level of said islands. Each body of each island must then be assigned a 

separate geometry file or files in the same format (IGES or STL). 

 

 

3.2.1 Geometry in the IGES Format 

 

In the case of the IGES format, the complete name of each file consists of the model name 

common to all model files, the name of the body to which the particular file belongs, and the file 

 
Fig. 5 Model geometry consisting of a single island versus multiple islands.

a) Model geometry consisting of a single 

island made of two adjacent volumes. 

b) Model geometry consisting of two 

islands, each made of single volume 
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extension, always separated by a period, see option a) in Fig. 6 below. A shortened name, 

consisting only of the model name and the suffix, is also acceptable, see option b). All bodies in 

the model will then be assigned the model name, followed by a sequence number, as their name. 

It is also possible to split the geometry into IGS files already at the level of shells, see 

option c) in Fig. 6 below. Each shell consists of a number of faces that are adjacent to each 

other. In this case, the names of the files corresponding to the shells separating two bodies 

must then specifically follow the format shown in variant d) in Fig. 6. The file name in this case 

contains the names of the two bodies separated by the shell. In any case, however, it must be 

ensured that the faces in each file are adjacent to each other (analogous to islands of bodies, no 

disconnected faces allowed). For models in IGES format, all length dimensions are always 

expressed in millimetres. 

 

 

 

3.2.2 Geometry in the STL Format 

 

Analogous naming conventions for geometry files apply to the STL format. When the model 

consists of only one body, variants a) and b) in Fig. 7 below can be used. However, beware that 

if the STL geometry files contain user-named surfaces, then it is necessary that these files are 

in ASCII form. This is because the Gmsh library does not yet support reading surface names 

from binary files. 

Otherwise, when the model is composed of multiple bodies, it is necessary to split the 

geometry into STL files already at the level of shells, see option c) in Fig. 7 below. Each shell 

consists of a number of faces that are adjacent to each other. The names of the files 

corresponding to the shells separating two bodies must then specifically follow the format 

shown in variant d) in Fig. 7. The file name in this case contains the names of the two bodies 

separated by the shell. In this case, the geometry files may be in both ASCII or binary form. In 

the case of models in STL format, all length dimensions are always expressed in the units in 

which the model was exported from the geometry pre-processor. 

 

a) <model name>.<body name>.igs 

b) <model name>.igs 

c) <model name>.<body name>.<shell name>.igs 

d) <model name>.<body 1 name>.<body 2 name >.<shell name>.igs 

 

Fig. 5 Possible variants of the names of the IGS geometry files, brackets <> are not written. 
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3.3 Installation and Usage of the Library 

To install the tool, one must first have Python installed. Compatibility is guaranteed for Python 

versions 3.10.x, for other versions, full functionality is not guaranteed. 

After that, it is required to install the NumPy library. In Windows operating system, this 

can be done easily with the pip install numpy command in the command line (run as 

administrator).  

In the case of the Linux operating system, use the pip3 install numpy command in the 

command line. Next step is to unzip the compressed directory containing the tool into the 

installation directory of one’s choice. 

All that remains is to set up an environment variable pointing to the installation directory 

of the tool. In Windows, the standard way to do this is to right click on “This Computer”, then 

select “Properties” from the popup menu, next click on “Advanced System Settings”, then on 

“Advanced” tab, click on “Environment Variables”, under “System Variables” click on “New...”, 

then in the “Variable Name:” field, type GMTPATH (uppercase) and in the “Variable Value:” field, 

input the absolute path to the installation directory of the tool. 

In Linux, first use the nano ~/.bashrc command in the command line to open (or create 

and edit if none exists) the .bashrc file. Next add the following line export 

GMTPATH=<"absolute path to the installation directory of the tool">, note 

that brackets <> are not written and the quotation marks should be used if the path contains 

spaces. 

The tool can be used in two ways, according to the first way one must first create a working 

directory and place the model geometry files in the appropriate format in it. Next, set the 

required parameter values in the GCF configuration file located in a root directory of the library. 

Now all that is left to do is to run the file "GMTLaunch.py" which is also located in the root 

directory. 

The second way is to copy the filled GCF file and the “GMTLaunch.py” file to the working 

directory with the model geometry and rename those two files there with the model name. In 

this case, it is not necessary to set the WorkingDirectoryPath and Name parameters in the 

GCF file, as these are filled in automatically when the launch file is executed from the working 

directory. 

a) <model name>.<volume name>.stl 

b) <model name>.stl 

c) <model name>.<volume name>.<shell name>.stl 

d) <model name>.<volume 1 name>.< volume 2 name >.<shell name>.stl 

 Fig. 6 Possible variants of the names of the STL geometry files, brackets <> are not written. 
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When the job is complete, the tool writes the resulting finite element mesh to a file in the 

chosen format and saves it in the job's working directory along with the LOG file. If a fatal 

problem occurred while solving the job, then the tool saves only the LOG file with an explanation 

of the cause of the problem. 
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4  Demonstration Examples 

 

This chapter provides examples demonstrating the most important features of the developed 

library. The examples show the discretization of geometry by tetrahedral finite elements, both 

parametric geometries in IGES input format and non-parametric geometries in STL format. 

In the geometry pre-processor (CAD software package), the selected faces of the model 

geometry were assigned arbitrary names and the model was then exported to an exchange 

format (IGES or STL). Not every CAE software package, whether open source or commercial, 

allows the user to assign the names of choice to the geometry faces and to further write this 

information to the geometry file in the exchange format. In the case of the IGES exchange 

format, the following commercial software packages were used to prepare the geometry of the 

demonstration examples in the manner described above: 

• PTC Creo CAD software, 

• FEM pre-processor Altair Hypermesh. 

In the case of the STL format, the following were used: 

• Ansys SpaceClaim geometry pre-processor, 

• 3D graphics software Blender. 

The former is commercial software, and the latter is open source. Both options then allow the 

STL file to be written in both ASCII and binary form and allow the model to be saved either in 

a single file or each continuous shell to be saved in a separate STL file see Fig. 9. 

 

 

In the first example, the usability of the above-mentioned software packages to prepare 

IGES or STL geometry with user-named faces will be demonstrated on four variants of a simple 

cube. The second example uses two different cases to demonstrate partitioning of the geometry 

into adjacent volumes with a conjoint finite element mesh, which is needed whenever multiple 

different materials need to be used in the model. The examples that follow demonstrate library 

Cubes_Blender.V2.c2.stl 

Cubes_Blender.V1.V2.c1_c2.stl 

Cubes_Blender.V1.c1.stl 

Fig. 8 Division of the model geometry into separate STL files. Fig. 7 Division of the model geometry into separate STL files. 
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functions on more complicated geometry. The example of the femur is used to demonstrate the 

splitting of the general STL geometry into separate named sections and remeshing of the original 

model topology. The example of a jet engine turbine blade demonstrates the discretization of a 

complex IGES geometry consisting of multiple adjacent volumes. The next example 

demonstrates the discretization of a complicated geometry, including the mesh refining of the 

original STL topology, but now on the example of a pelvic bone, consisting of a total of three 

adjacent volumes. The final example demonstrates generation of inflation layers in domain 

consisting of multiple volumes. 

Both output (mesh file in selected format and LOG files) and input (GCF file and geometry 

files in IGES or STL format) files of all demonstration examples can be found in the "examples" 

directory. 

 

4.1 Single Volume 

 

The first demonstration example is a cube discretized by linear tetrahedral finite elements. The 

example contains two cases, each with two variants. The total of 4 variants demonstrates 

capability of the library to accept geometry from 4 different CAE software environments. In the 

first case, the geometry of a cube with an edge length of 1 m was imported into the tool in IGES 

format. In the first variant, the geometry was prepared (and the names assigned to the selected 

faces) in the PTC Creo commercial CAD software environment, see Chyba! Nenalezen zdroj 

odkazů. a). In the second variant, the geometry was prepared in the environment of the 

commercial FEA pre-processor Altair Hypermesh, see Chyba! Nenalezen zdroj odkazů. b). 

 

 

In the second case, the geometry of the cube model with an edge length of 2 m was 

imported in STL format. In the first variant, the model geometry was prepared in the Ansys 

SpaceClaim software environment as a single ASCII file with named groups (shells), see Chyba! 

A1 

A6 

A3 

A4 

A2 

A5 

a), b) IGES 

Fig. 9 Geometry of the cube model with named faces for the variants in the IGES format. 
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Nenalezen zdroj odkazů. c). In the second variant, the geometry was prepared in the Blender 

software environment and stored in the form of three continuous shells in three separate files, 

see Chyba! Nenalezen zdroj odkazů. d): 

• "Cube_Blender.V1.A1.stl", 

• "Cube_Blender.V1.A2.stl" and  

• "Cube_Blender.V1.A3.stl". 

 

 

The input parameter values written to the GCF file in each variant are listed in Chyba! 

Chybný odkaz na záložku. below. The values of the other parameters were considered as 

default. 

 

Tab. 6 User-entered parameter values in the GCF file for different variants of the lone cube example. 

Parameter Name Value, Var. a) Value, Var. b) Value, Var. c) Value, Var. d) 

InputFormat 1 1 2 2 

STLRemesh False False False True 

MeshSizeMax 200. [mm] 200. [mm] 0.3 [m] 0.3 [m] 

LaunchGmsh True True True True 

 

The resulting finite element mesh was always written to the mesh file in the selected 

format and saved to the job's working directory along with the LOG file. The resulting finite 

element discretization for all four variants are shown in Fig. 12 below. The individual named 

surfaces are distinguished by different colours. The resulting finite element mesh of variants a) 

and b) came out virtually identical. Between variants c) and d), the resulting finite element mesh 

 
Fig. 10 Geometry of the cube model with named faces for variants in the STL format.

A3 

A1 

A2 

c), d) STL 
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differs substantially, since in variant c), unlike in variant d), there was no remeshing of the 

original STL cube topology used (STLRemesh = False). 

 

 

In Fig. 12 below, a preview of the resulting mesh file in .msh format (MSH) can be seen 

for all four variants of the example with the colour-highlighted names of the finite element 

groups corresponding to the user-named surfaces (red) and volumes (blue). As can be seen, the 

originally selected surface names have been changed in variant b). It is because the Hypermesh 

software automatically increments the surface names entered by the user. The surface names 

have been also modified in variant c). This time the SpaceClaim software is to blame, as it also 

automatically writes information about the length unit used into the group names inside the STL 

files. The STL format alone does not contain this information. A detailed description of the MSH 

file structure can be found in Appendix A. 

  

a), b) c) d) 

Fig. 11 The resulting finite element mesh for each variant of the cube model. Fig. 10 The resulting finite element mesh for each variant of the cube model. 

a) PTC Creo b) Altair Hypermesh c) ANSYS SpaceClaim d) Blender 

Fig. 12 Previews of the MSH files with user-named surfaces and volumes for each variant of the lone 

cube the example. 
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4.2 Two Adjacent Volumes with One Common Face 

 

The geometry of the second demonstration example has been divided into two cubes, as each 

of these cubes is made of a different material. However, the cubes still share one of their six 

faces. The discretization was done with linear tetrahedral elements. The example again contains 

two cases to demonstrate differences in workflow between different formats of geometry when 

working with multiple volumes. 

In the first case, the geometry was prepared in Altair Hypermesh software and imported 

in the IGES format into the tool environment. The geometry of the model consists of two 

separate cubes, each with an edge length of 1 m, and thus each one belongs to a separate file. 

The faces of each cube were again assigned arbitrary names, see Chyba! Nenalezen zdroj 

odkazů.. 

 

 

 

In the second case, the geometry was prepared in Blender software and transferred to the 

tool environment in STL format. In accordance with the requirements for STL files in the case 

of multiple adjacent volumes, as described in Section Chyba! Nenalezen zdroj odkazů., the 

model geometry consists of a total of three shells, each with an edge length of 2 m, where one 

of these shells represents a bulkhead separating the volumes of the individual cubes and each 

one of these shells belongs to a separate file, see Chyba! Nenalezen zdroj odkazů.. 

A1 

A6 

A3 

A4 

A2 

A5 

A7 

A12 

A9 

A10 

A8 

A11 

a) IGES 

Fig. 13 Geometry of the model of two cubes with the user-provided surface names, IGES format. 
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The input parameter values used in each variant that were written to the GCF file are listed 

in Tab. 7 bellow. The values of other parameters were considered as default. 

 

Tab. 7 User-entered parameter values in the GCF file for the two cubes example. 

Parameter Name Value, case a) Value, Case b) 

InputFormat 1 2 

STLRemesh False True 

MeshSizeMax 0.2 [mm] 0.5 [m] 

LaunchGmsh True True 

LocalMeshSurfaces V1.A6.1  

LocalMeshVolumes  V1 

LocalMeshSize 0.04 0.1 

LocalMeshGrowthRate 1.5 2.0 

 

The resulting finite element mesh was written to the MSH file and saved to the job's 

working directory along with the LOG file. The resulting finite element discretization for both 

cases are depicted in Fig. 16 below. The individual named shells are distinguished by colour. 

Note that the finite element mesh was refined in one of the surfaces in variant a) and one of the 

volumes in variant b), since respective local meshing parameters were provided. 

c2 c1_c2 

c1 

b) STL 

Fig. 14 Geometry of the model of two cubes with the user-provided surface names, STL format. 
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In Fig. 16 below, a preview of the resulting MSH file for both cases can be seen, with the 

colour-highlighted names of the finite element groups, corresponding to the user-named 

surfaces (red) and volumes (blue). As can be seen, the originally chosen surface names have 

been changed in option b). It is because the Hypermesh software automatically increments the 

surface names and adds the name of the parent volume. A detailed description of the MSH file 

structure can be found in Appendix A. 

 

 

 

 

 

Fig. 16 The resulting finite element mesh for each case of the two cubes example. 

a) b) 

Fig. 15 The resulting finite element mesh for each case of the two cubes example. 

a) IGES b) STL 

Fig. 17 Previews of the MSH files with user-named surfaces and volumes for both cases of the two cubes 

the example. 
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4.3 Femur Bone 
 

The third demonstration example is a human thigh bone, whose geometric model is a product of 

a CT scan and was obtained by the author as a freely available model from the GrabCAD 3D 

model library[11]. The model geometry was further modified in the Blender software 

environment, where it was divided into four separate sections corresponding to the basic 

anatomical parts of the femur. The geometry was therefore prepared as four separate STL files, 

see Fig. 17, namely: 

• "Femur_Blender.V1.Caput_Femoris.stl", 

• "Femur_Blender.V1.Collum_Femoris.stl", 

• "Femur_Blender.V1.Condyli_Femoris.stl" and 

• "Femur_Blender.V1.Corpus_Femoris.stl". 

 

 

 

Subsequently, the path to the working directory and the user-provided values of the 

configuration parameters were written into the GCF file, see Tab. 8. The values of other 

parameters were considered as default. 

 

Tab. 8 User-entered parameter values in the GCF file for the Femur example. 

Parameter Name Value 

InputFormat 2 

LaunchGmsh True 

STLRemesh True 

STLCurveAngle 150[°] 

MeshAlgorithm 5 

MeshSizeFromCurvature 12 

MeshSizeMax 5.E-3 [m] 

Caput_Femoris 

Collum_Femoris 

Corpus_Femoris 

Condyli_Femoris 

Fig. 18 Femur model geometry with the user-provided shell names. 
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MeshSizeMin 2.E-3 [m] 

Optimize False 

OptimizeNetgen True 

 

The resulting finite element mesh was written to the MSH file and saved to the job's 

working directory along with the LOG file. The resulting finite element discretization is depicted 

in Fig. 19 below. The individual shells are distinguished by colour. 

 

 

In Fig. 19 below, a preview of the resulting MSH file can be seen with the color-

highlighted names of the finite element groups corresponding to the user-named surfaces (red) 

and volume (blue). A detailed description of the MSH file structure can be found in Appendix A. 

 

 

 

Fig. 20 The resulting finite element mesh of the femur model. Fig. 19 The resulting finite element mesh of the femur model. 

Fig. 21 A preview of the MSH file with user-named surfaces and volume for the femur bone example. 
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4.4 Turbine Blade of a Jet Engine 

The fourth demonstration example is a turbine blade of a jet engine, the geometric model of 

which is a part of a jet engine assembly, the model of which was donated to the author by Dr. 

Renat Badykov from the Department of Aircraft Engine Construction and Design at the National 

Research University of Samara in Russia. The model was pre-processed in the Altair Hypermesh, 

where it was divided into separate volumes corresponding to the basic parts of the turbine blade 

and then exported in IGES format in the form of four files corresponding to the four volumes, 

see Fig. . 

 

 

As usual, the absolute path to the working directory and the selected values of the 

configuration parameters were then written to the GCF file, see Tab. 9. The values of other 

parameters were considered as default. 

 

Tab. 9 User-entered parameter values in the GCF file for the turbine blade example. 

Parameter Name Value 

LaunchGmsh True 

MeshSizeFromCurvature 12 

MeshSizeMax 1. [mm] 

MeshSizeMin 0.1 [mm] 

MinimumCircleNodes 12 

MinimumCurveNodes 2 

ElementOrder 2 

 

Firtree Root Airfoil Shroud 

Fig. 20 Geometry of the turbine blade model with the user-provided volume names. 
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 The resulting finite element mesh was written to the MSH file and saved to the job's 

working directory along with the LOG file. The resulting finite element discretization is depicted 

in Fig. 21 below. The individual volumes are distinguished by colour. 

 

 

 

A preview of the resulting MSH file can then be seen in Fig. 22 below, with the names of 

the finite element groups corresponding to the user-named volumes highlighted in red. A 

detailed description of the MSH file structure can be found in Appendix A. 

 

 

4.5 Ilium Bone 

 

The last demonstration example is a human pelvic bone whose geometric model is a product of 

a CT scan and was obtained by the author as a freely available model from the GrabCAD 3D 

model library. The model geometry was further modified in the Blender software environment, 

where it was divided into three separate volumes corresponding to the three separate bones 

that actually make up the pelvic bone. For these volumes, the author further modelled surfaces 

serving as bulkheads that separate the resulting volumes. The resulting geometry was then 

imported into the tool environment in the form of seven separate STL files, see Fig. 23, namely: 

 

Fig. 22 The resulting finite element mesh of the turbine blade model. 

Fig. 23 Preview of the MSH file with the user-named volumes for the turbine blade example. 
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• "Ilium_Blender.Ilium.A1.stl", 

• "Ilium_Blender.Ilium.Ischium.A1_A3.stl", 

• "Ilium_Blender.Ilium.Pubis.A1_A2.stl", 

• "Ilium_Blender.Ischium.A3.stl", 

• "Ilium_Blender.Pubis.A2.stl", 

• "Ilium_Blender.Pubis.Ischium.A2_A3_1.stl" and 

• "Ilium_Blender.Pubis.Ischium.A2_A3_2.stl". 

 

 

Subsequently, the absolute path to the working directory and user-selected values of the 

configuration parameters were written into the GCF file, see Tab. 10. The values of other 

parameters were considered as default. 

 

Tab. 10 User-entered parameter values in the GCF file for the ilium bone example. 

Parameter Name Value 

InputFormat 2 

MaxNumThreads 3 

LaunchGmsh True 

STLRemesh True 

STLFacetAngle 60. [°] 

A1_A2 

A3 

A1_A3 

A1 

A2 

A2_A3_2 

A2_A3_1 

Fig. 24 Geometry of the ilium bone model with the user-provided shell names. 
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MeshSizeMax 2.E-3 [m] 

MeshSizeMin 4.E-4 [m] 

 

The resulting finite element mesh was written to the MSH file and saved to the job's 

working directory along with the LOG file. The resulting finite element discretization is depicted 

in Chyba! Nenalezen zdroj odkazů. below. The individual user-named shells are 

distinguished by colour. 

 

 

In Fig. 25 below can be seen a preview of the resulting MSH file with the colour-

highlighted names of the finite element groups corresponding to the user-named surfaces (blue) 

and volumes (red). A detailed description of the MSH file structure can be found in Appendix A. 

 

Fig. 25 The resulting finite element mesh of the ilium model. 

Fig. 26 Preview of the MSH file with the user-named surfaces and volumes for the pelvic bone example. 
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4.6 Inflation Layers in Domain Made of Multiple Volumes 

 

The last example demonstrates the generation of inflation layers on geometry composed of two fitting 

volumes, see Fig. 26. The surfaces on which the inflation layers are to be generated are chosen so that 

the boundary between the two volumes passes through the intended inflation layers. The model geometry 

was imported into the environment of the tool as two separate IGES files. 

 

 

 

Subsequently, the absolute path to the working directory and the user-selected values of 

the configuration parameters were written into the GCF file, see Tab. 11. The values of the other 

parameters were considered as default. 

 

Tab. 11 User-entered parameter values in the GCF file for the ilium bone example. 

Parameter Name Value 

LaunchGmsh True 

MeshSizeMax 50. [mm] 

MinimumCircleNodes 20 

InflationLayersSurfaces FACE_5,FACE_6,FACE_7,FACE_1

2 

InflationLayers 10 

InflationLayersMethod 1 

InflationLayersThickness 35. 

InflationLayersGrowthRate 1.3 

V1 

V2 

FACE_7 

FACE_5 

FACE_6 

FACE_12 

Fig. 27 Geometry of the model for generation of inflation layers with names of selected faces and volumes. 
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The resulting finite element mesh was written to the MSH file and saved to the job's 

working directory along with the LOG file. The resulting finite element discretization is depicted 

in the Fig. 27 below. The individual named shells are distinguished by color. 

 

 

Fig. 28 The resulting finite element mesh of the model for generation of inflation layers. 
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5 Scalability of the Gmsh library  

 

If the Gmsh library is compiled with OpenMP support, then the key steps in creating a 

finite-element mesh can be performed in parallel using multiple threads of the computer 

processor. The 1D and 2D meshing is then parallelized using a coarse approach, where multiple 

curves (1D meshing) or surfaces (2D meshing) are meshed in parallel independently of each 

other depending on the number of available processor threads. 3D meshing is then parallelized 

when using the HXT meshing algorithm (parameter MeshAlgorithm3D = 10) by using the so-

called fine approach, where the meshing procedure on a specific volume of geometry is 

performed in parallel using multiple processor threads[12]. 

The Gmsh library was compiled with OpenMP support in the Linux operating system 

environment on the Karolina supercomputer of the IT4Innovations National Supercomputing 

Centre. The scalability of 2D meshing was then tested on one of the supercomputer nodes, 

having 2 processors, each with 64 cores and 128 threads, and with a clock frequency of 2.6 

GHz each. The geometry of the test problem consisted of 128 identical surfaces, see Chyba! 

Nenalezen zdroj odkazů.. 

 

 

On this test problem, a 2D mesh was then generated in the Gmsh library using the 

"Frontal-Delaunay" algorithm for different numbers of threads and the strong scalability of the 

Gmsh library was then measured in the range of 1 to 128 threads. The resulting strong 

scalability plot can be seen in Fig. 30. 

 

Fig. 29 Geometry for scalability test of 2D meshing. 
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The values from the plot in Fig. 30, along with the number of nodes and finite elements, are 

listed in Tab. 12. The number of nodes and finite elements always vary slightly when running 

the same job repeatedly. 

 
Tab. 12 Data of the strong scalability test of 2D meshing in the Gmsh Library. 

Threads [-] Nodes [-] Finite elements [-] Time [s] 

1 3 734 989 7 470 234 344,1 

2 3 734 988 7 470 233 179,1 

4 3 735 027 7 470 310 94,0 

8 3 735 005 7 470 267 50,2 

16 3 735 003 7 470 262 26,3 

32 3 735 010 7 470 276 15,8 

64 3 734 935 7 470 126 11,8 

128 3 734 967 7 470 191 14,1 

 

The scalability of the 3D meshing algorithm “HXT” was also tested on the same hardware 

on two separate benchmarks. The geometry of the first benchmark was a simple cube, see 

Chyba! Nenalezen zdroj odkazů. a). The geometry of the second benchmark was a car wheel 

rim, see Chyba! Nenalezen zdroj odkazů. b), whose model was obtained by the author as a 

freely available model from the GrabCAD 3D model library. 
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Fig. 31 Strong scalability plot of 2D meshing in the Gmsh library. Fig. 30 Strong scalability plot of 2D meshing in the Gmsh library. 
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On these two benchmarks, a 3D mesh for different number of threads was then generated 

in the Gmsh library using the "HXT" algorithm and the strong scalability was measured in the 

range of 1 to 128 threads. The resulting strong scalability plots for the first benchmark (cube) 

and second benchmark (car wheel rim) can be seen in Fig. 31 and Fig. 32, respectively. 

 

 

 

 

a) b) 

Fig. 32 Geometry of the first and second benchmark for the scalability test of 3D mesher “HXT”. 
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Fig. 33 Strong scalability plot of the 3D mesher “HXT” for the case of the first benchmark. 
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Fig. 34 Strong scalability plot of the 3D mesher “HXT” for the case of the second benchmark. 
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The values from the plots on Fig. 31 and Fig. 32 are listed along with the number of nodes 

and finite elements in Tab. 13, and Tab. 14, respectively. 

 

Tab. 13 Data of the strong scalability test of the 3D mesher “HXT” for the case of the first benchmark. 

Threads [-] Nodes [-] Finite elements [-] Time [s] 

1 63 937 485 399 810 852 812,0 

2 63 928 263 399 753 549 729,8 

4 63 928 172 399 750 288 548,6 

8 63 925 537 399 738 046 394,7 

16 63 926 665 399 737 308 312,9 

32 63 919 854 399 700 342 261,7 

64 63 923 615 399 716 852 240,8 

128 63 922 421 399 706 484 239,8 

 

Tab. 14 Data of the strong scalability test of the 3D mesher “HXT” for the case of the second 

benchmark. 
Threads [-] Nodes [-] Finite elements [-] Time [s] 

1 32 007 110 390 665 482 1222,0 

2 31 996 969 390 539 615 1115,5 

4 31 997 547 390 552 500 960,4 

8 31 999 064 390 542 436 841,9 

16 31 995 520 390 502 668 758,6 

32 31 998 373 390 538 860 666,3 

64 31 999 604 390 545 847 652,4 

128 31 998 020 390 532 424 628,3 
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Appendix A Structure of the MSH File 

 

$MeshFormat 

4.1 0 8 

$EndMeshFormat 

$PhysicalNames    Description of groups of geometric entities follows 

13      Total number of geometric entity groups 

2 1 "V1.p1.1"    Geometric entities of 2nd order (surfaces) 

2 2 "V1.p2.1"    Names of surfaces 

2 3 "V2.l6.1" 
2 4 "V1.p4.1" 

2 5 "V1.p5.1" 

2 6 "V1.p6.1" 

2 7 "V2.l1.1"    Identification numbers of geometric entities 
2 8 "V2.l2.1" 

2 9 "V2.l3.1" 

2 10 "V2.l4.1" 

2 11 "V2.l5.1" 

3 12 "V1"     Geometric entities of 3rd order (volumes) 

3 13 "V2"     Names of volumes 
$EndPhysicalNames 

$Entities     Description of geometric entities follows 

 

$EndEntities 

$Nodes     Data of mesh nodes follows 

 

$EndNodes 

$Elements     Data of finite elements follows 

13 868 1 868    Total number of groups of finite elements 

2 1 2 32     Total number of finite elements 

1 80 1 13     Range of identification numbers of the finite elements 

 
32 75 81 79 

 

2 11 2 32     Geometric entity of 2nd order (surface) 

321 170 3 19     Identification number of the geometric entity 

      Finite element of type 2 (triangle) 

352 165 171 169    The number of finite elements falling under this entity 

3 1 4 256 

353 79 175 116 176    Identification number of a finite element 

      Identification numbers of nodes forming the element 
608 83 33 91 32  

3 2 4 260     Geometric entity of 3rd order (volume) 

609 138 179 180 182   Finite element of type 4 (tetrahedra) 
 

868 63 153 139 142  

$EndElements 
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