e6ce430d-9a14-439f-b59e-e5da15b3c608

2013

FROLOV, A.; HÚSEK, D.; BOBROV, P.; MOKIENKO, O.; TINTĚRA J. Sources of Electrical Brain Activity Most Relevant to Performance of Brain-computer Interface Based on Motor Imagery. In Brain-Computer Interface InTech. ISBN 980-953-307-960-3. Doi: http://dx.doi.org/10.5772/55166.

KRÖMER, P.; OWAIS, S.; PLATOŠ, J.; SNÁŠEL, V. Towards new directions of data mining by evolutionary fuzzy rules and symbolic regression. In Computers & Mathematics with Applications. Volume 66, Issue 2. ISSN 0898-1221. Doi 10.1016/j.camwa.2013.02.017. (In Press, Corrected Proof available online) http://www.sciencedirect.com/science/article/pii/S0898122113001284.

FROLOV, A.; HÚSEK, D.; POLYAKOV, P.Y. Two Expectation Maximization Algorithms for Boolean Factor Analysis. In Neurocomputing. Doi: http://dx.doi.org/10.1016/j.neucom.2012.02.055.

2012

BRANDSTETTER P.; KRECEK T. Speed and Current Control of Permanent Magnet Synchronous Motor Drive Using IMC Controllers. In Advances in Electrical and Computer Engineering. Volume 12, Issue 4, p. 3-10, 2012. ISSN 1582-7445. Doi: http://dx.doi.org/10.4316/AECE.2012.04001.

SEDANO, J.; GONZÁLEZ, S.; HERRERO, A.; BARUQUE, B.; CORCHADO, E. Mutating network scans for classifier ensemble assessment. In Logic Journal of the IGPL. Oxford University Press.

BESHAH, T., EJIGU, D., ABRAHAM, A., SNÁŠEL, V., KRÖMER, P.: Knowledge discovery from road traffic accident data in ethiopia: Data quality, ensembling and trend analysis for improving road safety. In Neural Network World. Volume 22, Issue 3, p. 215 – 244. ISSN 1210-0552. http://isda2001.softcomputing.net/nnw2012_tibebe.pdf.

KOLOSENI, D.; LAMPINEN, J.; LUUKKA P. Optimized Distance Metrics fo Differential Evolution based Nearest Prototype Classifier. In Expert Systems with Applications. Volume 39, Issue 12, p. 10564-10570. Elsevier. ISSN 0957-4174. Doi: http://dx.doi.org/10.1016/j.eswa.2012.02.144.

PENHAKER, M.; KREJCAR, O.; KASIK, V.; SNÁŠEL, V. Cloud computing environments for biomedical data services. In Proceedings of the 13th international conference on Intelligent Data Engineering and Automated Learning, IDEAL’12, p. 336–343. Berlin, Heidelberg, 2012. Springer-Verlag.

2011

BARUQUE, B., Corchado, E., Yin, H. THE S2-ENSEMBLE FUSION ALGORITHM. In International Journal of Neural Systems. Volume 21, Issue 06, p. 505–525. ISSN 0129-0657. Doi: http://dx.doi.org/10.1142/S0129065711003012.

FROLOV, A., HÚSEK, D., POLYAKOV, P.Y.; SNÁŠEL, V. New BFA Method Based on Attractor Neural Network and Likelihood Maximization. Neurocomputing, Elsevier (S)

 

Salomon supercomputer is the 87th most powerful supercomputer in the world
Salomon supercomputer is the 87th most powerful supercomputer in the world according to the TOP500 […]
Invitation to the course CFD simulations using OpenFOAM
(2017-12-14 to 2017-12-15)
When: Thursday December 14, 2017, 9.00am – Friday December 15, 2017, 3.30pm Where: campus VŠB-TUO […]
Invitation to the course Productivity tools for High Performance Computing (2017-11-27 to 2017-11-28)
When: Monday November 27, 2017, 9.30am – Tuesday November 28, 2017, 3.30pm Where: campus VŠB-TUO […]
12th Open Access Grant Competition
Announced regularly three times a year for employees of research institutions, scientific and educational organizations. […]
16th PRACE Call for Proposals for Project Access and SHAPE 6th Call for Applications
16th PRACE Project Access The 16th PRACE Call for Proposals for Project Access is open […]
All news